Главная · Статьи · Файлы · Форум · Категории новостей April 23 2024 15:29:04
Навигация
Главная
Статьи
Файлы
FAQ
Форум
Категории новостей
Обратная связь
Фото галерея
Поиск
Ссылки
Разное
Последние статьи
В процессе изготовле...
Как производят разме...
Библиографический сп...
Контрольные вопросы
Содержание отчета
Сейчас на сайте
Гостей: 1
На сайте нет зарегистрированных пользователей

Пользователей: 33
новичок: tgolovko2010
Друзья сайта

Рейтинг@Mail.ru
Объявление
#27 Свободные и затухающие колебания
Во всякой реальной колебательной системе всегда присутствует сила трения, которую также необходимо учитывать при рассмотрении колебания. При колебательном движении осциллятора им будет совершена работа против сил трения, в результате чего энергия колебаний будет постепенно уменьшаться и как следствие будет уменьшаться амплитуда колебаний. Свободные затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается из-за потерь энергии колебательной системой. Рассмотрим линейную колебательную систему – систему, параметры которой не изменяются в ходе колебаний. Рассмотрим колебания осциллятора, на который помимо квазе-упругих сил действует сила трения. Будем считать, что эта сила трения пропорциональна скорости колебания матерьяльной точки.
F= Fупр+Fтр ; Fупр = -kx ; Fтр = -b * dx/dt ; m * d2 x / dt (ст.2)= -b*dx/dt – kx
Уравнение, описывающее затухающие колебания:
(d2 x / dt (ст2)) + b/m * dx/dt + kx / m = 0 ; Введем обозначения:
w 0 (ст.2) = k/m ; b/m = 2БЕТА ; БЕТА = b/2m; b – коэффициент сопротивления ; (d2 x / dt (ст.2)) + 2БЕТА*dx/dt + w 0 (ст.2) x = 0 ;
БЕТА – коэффициент затухания.
Общее решение этого уравнения будем искать в виде X = A e (ст.ЛЯМДА t).
Подставим это решение в дифференциальное уравнение затухающих колебаний: dx/dt = A ЛЯМДА e (ст. ЛЯМДА t) ; d2 x / dt (ст.2) = A ЛЯМДА (ст.2) e (ст. ЛЯМДА t); A ЛЯМДА (ст.2) e (ст. ЛЯМДА t) + 2bA ЛЯМДА e (ст.ЛЯМДА t) + w 0 (ст.2) A e (ст.ЛЯМДА t) ; Сокращаем:
ЛЯМДА (ст.2) +2БЕТА d + w 0 (ст.2) = 0 – характеристическое уравнение.
Решая его, получаем: X = - БЕТА + - (корень БЕТА (ст.2) – w 0 (ст.2)) =
- БЕТА + - i (корень w 0 (ст.2) – БЕТА (ст.2)) ; Таким образом общее решение исходного дифференциального уравнения можно преобразовать к виду: w = (корень w 0 (ст.2) – БЕТА (ст.2)) ; X (t) = A0 e (ст. – БЕТА t) sin (wt + ? 0) ;
(рисунок – график затухающих колебаний – сжатый синус, все ниже и неже стает по оси OY).
Затухающие колебания не являются периодическими, т.к. максимальное значение колеблющихся величин, достигаемое в некоторый момент времени в последующем никогда не повторяется, поэтому можно говорить об условном периоде затухающих колебаний – T = 2ПИ / w = 2ПИ / (корень w 0 (ст.2) – БЕТА (ст.2)). Если БЕТА >= w 0, то процесс становится апериодическим.
Логарифмический декремент затухания.
? = ln (A(t) / A(t + ПИ)) = ln (A0 e (ст. – БЕТА t) / A0 e (ст. – БЕТА (t + ПИ))) = ln (A0 e (ст. – БЕТА t) / A0 e (ст. – БЕТА t) e (ст. – БЕТА ПИ)) = БЕТА T ;
? = БЕТА T = 1 / N ; Время релаксации (ТАУ) в течении которого амплитуда затухающих колебаний убывает в e раз ; A = A0 / e = A0 e (ст. – БЕТА ТАУ) ; e (ст. - 1) = e (ст. – БЕТА ТАУ) – БЕТА ТАУ = 1 ;
ТАУ = 1 / БЕТА ; N = ТАУ / T – число колебаний, в течении которых амплитуда убывает в e раз ; ? = 1 / N ;
Добротность. Q = [2 ПИ W (t)] / [W (t) – W (t + T)]; Добротность Q – это величина, пропорциональная отношению энергии, запасенной в колебательной системе к уменьшению этой энергии за один период. Т.к. энергия, запасенная в колебательной системе пропорциональна квадрату амплитуды, то: Q = 2 ПИ A (ст.2) (t) / A (ст.2) (t) – A (ст.2) (t +T);
A = A0 e (ст. – БЕТА t) ; Q=2ПИ A0 e(ст.-2 БЕТА t) / A0 (ст.2) e(ст. –2 БЕТА t) – A0 e (ст.-2 БЕТА (t + T)) ; Q = 2ПИ / (1 – e (ст. –2 БЕТА t)) ; Q=ПИ / ? – при малых затуханиях.
Вынужденные колебания осциллятора под действием синусоидальной силы. ; ma = F ; m d2 x / dt (ст.2) = F ; Fупр = - kx ; Fтр = - b dx / dt ; F = F0 sin?t ; (d2 x / dt (ст.2)) + (2 БЕТА dx / dt) + w 0 (ст.2) = (F0 / m) sin?t ; Это дифференциальное уравнение описывает вынужденные колебания. В общем случае общее решение этого неоднородного дифференциального уравнения имеет вид: X(t) = X1(t) + X2(t) ; X1(t) является общим решением однородного диф. уравнения, описывающего свободный гармонический затухающий осциллятор. Видно, что после начала действия вынуждающей силы возникает сложный колебательный процесс, состоящий из суммы 2х колебаний – затухающего колебания X1(t) с частотой wt и незатухающего колебания с частотой ?t. X1(t) за достаточно небольшой промежуток времени затухает и остается только одно колебание с частотой вынужденной силы ?0. Это время, в течении которого X1(t) затухает, называется временем установки вынужденных колебаний. Чем больше добротность осциллятора, тем больше время установления ТАУ~10 Q/w0 (это время, в течении которого амплитуда затухающего колебания уменьшится в 100 раз).
В общем случае установившееся вынужденное колебание имеет вид:
X = A sin (?t + ФИ) ; непосредственно подставляя это выражение в дифференциальное уравнение вынужденного колебания можно получить:
A = F0 / m (корень (w 0 (ст.2) – ?(ст.2) + ФИ БЕТА (ст.2) ? (ст.2)) ;
tgФИ = - 2 БЕТА ? / (w 0 (ст.2) – ? (ст.2))
1. при ?=0 ; A = F0 / m w 0 (ст.2) = F0 / k – статическое смещение.
2. при ??БЕСКОНЕЧНОСТЬ ; A?0 ;
Максимум амплитуды вынужденных колебаний достигается при частоте
? = (корень w 0 (ст.2) – БЕТА (ст.2)) ;
При частоте w = (корень w 0 (ст.2) – БЕТА (ст.2)) амплитуда достигает максимума: Amax = F0 / 2 m БЕТА ?
Явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты вынужденной силы с соответственной частотой колебаний системы называется резонансом. Амплитуда колебаний при резонансе зависит от затухания, чем оно больше, тем меньше амплитуда. При нулевом затуханиии амплитуда колебаний при резонансе достигает бесконечно большой величины.
Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.

Нет данных для оценки.
Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Случайные статьи
4.1.2. Закон Паскаля
В) Термодинамичес...
V называется векто...
5.1. ПОЯВЛЕНИЕ ПАР...
2.4.1. Взаимодейст...
5.7. КАК РАБО...
Физический принци...
Работа и кинетиче...
США производят и и...
5.15. НЕКОТОРЫЕ ОС...
Геометризация природы
1.1.3. Чем больше ...
ГЕНЕРАТОР СВЧ НА Д...
5.3. АНАЛИЗ ОСНОВН...
Кинетической энергией
#19 Кинетическая э...
#34 Энтропия
5.1. ПОЯВЛЕНИЕ ПАР...
Формулы алгебры мн...
5.7. КАК РАБО...
#43 Средняя кинети...
5.3. АНАЛИЗ ОСНОВН...
5.18. НЕКОТОРЫЙ А...
5.4. ГРАВИТАЦИЯ ГЛ...
5.7. КАК РАБО...
5.18. НЕКОТОРЫЙ А...
ГЛАВА 15
Канонический и пар...
ГЛАВА 32
5.18. НЕКОТОРЫЙ А...
5.18. НЕКОТОРЫЙ А...
ГЛАВА 33
2.4.1. Взаимодейст...
Евклидово прост...
5.18. НЕКОТОРЫЙ А...
3. ДАЛЬНЕЙШАЯ ЭВОЛ...
Крушение наивного ...
2.1. О ВРЕМЕНИ,...
Суперсила
Экономика ядерной ...