Главная · Статьи · Файлы · Форум · Категории новостей March 19 2024 08:20:22
Навигация
Главная
Статьи
Файлы
FAQ
Форум
Категории новостей
Обратная связь
Фото галерея
Поиск
Ссылки
Разное
Последние статьи
В процессе изготовле...
Как производят разме...
Библиографический сп...
Контрольные вопросы
Содержание отчета
Сейчас на сайте
Гостей: 1
На сайте нет зарегистрированных пользователей

Пользователей: 33
новичок: tgolovko2010
Друзья сайта

Рейтинг@Mail.ru
Объявление
Расщепление атома
Часто говорят, что существуют два вида наук – большие науки и малые. Расщепление атома – большая наука. Она располагает гигантскими экспериментальными установками, колоссальными бюджетами и получает львиную долю Нобелевских премий.
Зачем физикам понадобилось расщеплять атом? Простой ответ – чтобы понять, как устроен атом, – содержит лишь долю истины, но есть и более общая причина. Говорить буквально о расщеплении атома не вполне правильно. В действительности речь идет о столкновении частиц высокой энергии. При столкновении субатомных частиц, движущихся с большими скоростями, происходит рождение нового мира взаимодействий и полей. Несущие огромную анергию осколки материи, разлетающиеся после столкновений, таят в себе секреты природы, которые от “сотворения мира” оставались погребенными в недрах атома.
Установки, на которых осуществляется столкновение частиц высоких энергий, – ускорители частиц – поражают своими размерами и стоимостью. Они достигают нескольких километров в поперечнике, и по сравнению с ними даже лаборатории, в которых изучаются столкновения частиц, кажутся крошечными. В других областях научных исследований оборудование размещается в лаборатории, в физике высоких энергий лаборатории пристраиваются к ускорителю. Недавно Европейский центр ядерных исследований (ЦЕРН), расположенный недалеко от Женевы, выделил несколько сотен миллионов долларов на строительство кольцевого ускорителя. Длина окружности сооружаемого для этой цели туннеля достигает 27 км. Ускоритель, получивший название ЛЭП (LEP, Large Electron Positron ring–большое электрон– позитронное кольцо), предназначен для ускорения электронов и их античастиц (позитронов) до скоростей, всего лишь “на волосок” отличающихся от скорости света. Чтобы иметь представление о масштабах энергии, вообразим, что вместо электронов до таких скоростей разгоняется монетка достоинством в один пенни. В конце цикла ускорения она обладала бы энергией, достаточной для производства электроэнергии на сумму 1000 млн. долл.! Неудивительно, что подобные эксперименты принято относить к физике “высоких энергий”. Двигаясь внутри кольца навстречу друг другу, пучки электронов и позитронов испытывают лобовые столкновения, при которых электроны и позитроны аннигилируют, высвобождая энергию, достаточную для рождения десятков других частиц.
Что это за частицы? Некоторые из них – те самые “кирпичики”, из которых построены мы с вами: протоны и нейтроны, составляющие атомные ядра, и обращающиеся вокруг ядер электроны. Другие частицы обычно в окружающем нас веществе не встречаются: их век чрезвычайно короток, и по истечении его они распадаются на обычные частицы. Число разновидностей таких нестабильных короткоживущих частиц поразительно: их известно уже несколько сотен. Подобно звездам, нестабильные частицы слишком многочисленны, чтобы их различать “по именам”. Многие из них обозначены только греческими буквами, а некоторые – просто числами.
Важно иметь в виду, что все эти многочисленные и разнообразные нестабильные частицы отнюдь не являются в прямом смысле составными частями протонов, нейтронов или электронов. Сталкиваясь, электроны и позитроны высоких энергий вовсе не разлетаются на множество субатомных осколков. Даже при столкновениях протонов высоких энергий, заведомо состоящих из других объектов (кварков), они, как правило, не расщепляются на составные части в обычном смысле. То, что происходит при таких столкновениях, лучше рассматривать как непосредственное рождение новых частиц из энергии столкновения.
Лет двадцать назад физики были совершенно сбиты с толку многочисленностью и разнообразием новых субатомных частиц, которым, казалось, не будет конца. Невозможно было понять, для чего столько частиц. Может быть, элементарные частицы подобны обитателям зоопарка с их неявно выраженной принадлежностью к семействам, но без какой либо четкой систематики. Или, возможно, как полагали некоторые оптимисты, элементарные частицы таят в себе ключ к Вселенной? Что такое наблюдаемые физиками частицы: малозначительные и случайные осколки материи или возникающие на наших глазах очертания смутно ощущаемого порядка, указывающего на существование богатой и сложной структуры субъядерного мира? Ныне в существовании такой структуры нет никаких сомнений. Микромиру присущ глубокий и рациональный порядок, и мы начинаем понимать, каково значение всех этих частиц.
Первый шаг к пониманию микромира был сделан в результате систематизации всех известных частиц, подобно тому как в XVIII в. биологи составляли подробнейшие каталоги видов растений и животных. К числу наиболее важных характеристик субатомных частиц относятся масса, электрический заряд и спин.
Поскольку масса и вес связаны между собой, частицы с большой массой часто называют “тяжелыми”. Соотношение Эйнштейна Е =mc^2 указывает, что масса частицы зависит от ее энергии и, следовательно, от скорости. Движущаяся частица тяжелее покоящейся. Когда говорят о массе частицы, имеют в виду ее массу покоя, поскольку эта масса не зависит от состояния движения. Частица, имеющая нулевую массу покоя, движется со скоростью света. Наиболее очевидный пример частицы с нулевой массой покоя – фотон. Считается, что электрон – самая легкая из частиц с ненулевой массой покоя. Протон и нейтрон почти в 2000 раз тяжелее, тогда как масса самой тяжелой частицы, которую удалось создать в лаборатории (Z частицы), примерно в 200 000 раз больше массы электрона.
Электрический заряд частиц меняется в довольно узком диапазоне, но, как мы отмечали, всегда кратен фундаментальной единице заряда. Некоторые частицы, например фотон и нейтрино, не имеют электрического заряда. Если заряд положительно заряженного протона принять за +1, то заряд электрона равен 1.
В гл. 2 мы ввели еще одну характеристику частиц – спин. Он также всегда принимает значения, кратные некоторой фундаментальной единице, которая по историческим причинам выбрана равной 1/2. Так, протон, нейтрон и электрон имеют спин 1/2, а спин фотона равен 1. Известны также частицы со спином 0, 3/2 и 2. Фундаментальных частиц со спином больше 2 не обнаружено, и теоретики полагают, что частиц с такими спинами не существует.
Спин частицы – важная характеристика, и в зависимости от его величины все частицы разделяются на два класса. Частицы со спинами 0, 1 и 2 называются “бозонами” – в честь индийского физика Чатьендраната Бозе, а частицы с полуцелым спином (т.е. со спином 1/2 или 3/2 –“фермионами” в честь Энрико Ферми. Принадлежность к одному из этих двух классов является, вероятно, наиболее важной в перечне характеристик частицы.
Другая важная характеристика частицы – ее время жизни. До недавнего времени считалось, что электроны, протоны, фотоны и нейтрино абсолютно стабильны, т.е. имеют бесконечно большое время жизни. Нейтрон остается стабильным, пока он “заперт" в ядре, но свободный нейтрон распадается примерно за 15 мин. Все остальные известные частицы в высшей степени нестабильны, их времена жизни колеблются в пределах от нескольких микросекунд до 10 23 с. Такие интервалы времени кажутся непостижимо малыми, однако не следует забывать, что частица, летящая со скоростью, близкой к скорости света (а большинство частиц, рождающихся на ускорителях, движутся именно с такими скоростями), успевает пролететь за микросекунду расстояние в 300 м.
Нестабильные частицы претерпевают распад, представляющий собой квантовый процесс, и поэтому в распаде всегда есть элемент непредсказуемости. Продолжительность жизни конкретной частицы невозможно предсказать заранее. На основе статистических соображений можно предсказать лишь среднее время жизни. Обычно говорят о периоде полураспада частицы – времени, за которое популяция тождественных частиц сокращается наполовину. Эксперимент показывает, что уменьшение численности популяции происходит по экспоненте (см. рис. 6) и период полураспада составляет 0,693 от среднего времени жизни.
Физикам недостаточно знать, что та или иная частица существует – они стремятся понять, какова ее роль. Ответ на этот вопрос зависит от перечисленных выше свойств частиц, а также от характера сил, действующих на частицу извне и внутри ее. В первую очередь свойства частицы определяются ее способностью (или неспособностью) участвовать в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, образуют особый класс и называются андронами. Частицы, участвующие в слабом взаимодействии и не участвующие в сильном, называются лептонами, что означает “легкие”. Познакомимся кратко с каждым из этих семейств.
Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.

Нет данных для оценки.
Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Случайные статьи
5.7. КАК РАБО...
Теорема о базисном...
4. ОБРАЗОВАНИЕ ПЛО...
ГЛАВА ШЕСТАЯ
5.18. НЕКОТОРЫЙ А...
2.4.1. Взаимодейст...
5.7. КАК РАБО...
ГЛАВА 56
ГЛАВА 24
5.8. КАК ОБРАЗУЮ...
4.1.Физическая пр...
4. ОБРАЗОВАНИЕ ПЛО...
ОДП
При умножении аргу...
.1 КАК ОБНАРУЖИТ...
2.4.1. Взаимодейст...
Содержание
Красота как путево...
Консервативные и н...
2.4.1. Взаимодейст...
5.18. НЕКОТОРЫЙ А...
5.6. ПРОЦЕСС ГРАВ...
5.3. АНАЛИЗ ОСНОВН...
5.10. КОСМИЧЕСКИЕ...
Причуды квантовой ...
1.2. ВЫВОДЫ
5.7. КАК РАБО...
ГЛАВА 34
Теория Калуцы – Кл...
5.18. НЕКОТОРЫЙ А...
5.7. КАК РАБО...
1.2. Гравитация.
4.1.2. Закон Паскаля
5.20. ЧТО ОТКРЫЛ...
5.6. ПРОЦЕСС ГРАВ...
3. ДАЛЬНЕЙШАЯ ЭВОЛ...
Обычное становится...
Вынужденные колеба...
Поле
3.3.5. Эффект капи...