n0 k T = (1/3) n0 v (ст.2) ; (3/2) k T = m0 v (ст.2) / 2 ; = m0 v (ст.2) / 2 = (3/2) k T – кинетическая энергия молекул.
v = (корень) 3kT / m0 = (корень) 3RT / ? – средняя квадратичная скорость молекул ; Для матерьяльной точки, каковой является молекула идеального газа, есть 3 степени свободы – x, y, z. Т.к. средняя кинетическая энергия молекул идеального газа равна (3/2)kT, то можно утверждать, что на одну степень свободы приходится энергия, равная (1/2)kT. Этот вывод совпадает с выводом общей теоремы о равновероятном распределении энергии по степеням свободы, которая утверждает, что в состоянии термодинамического равновесия на каждую степень свободы приходится энергия равная (1/2)kT, откуда в общем случае средняя энергия молекул определяется выражением (i/ 2)kT, где i – число степеней свободы.
Система из N точек имеет 3N степени свободы (в том случае, если между точками нет жесткой связи; каждая жесткая связь уменьшает число степеней свободы на единицу). В общем случае i = i пост + i вращ + 2i колеб
Закон о равновесном распределении энергиии по степеням свободы получен на основании классических представлений о характере движения молекул. Он нарушается в тех случаях, когда становится существенным квантовый эффект
Опубликовал Kest
December 11 2009 15:41:24 ·
0 Комментариев ·
3843 Прочтений ·
Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.
Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.
Нет данных для оценки.
Гость
Вы не зарегистрированны? Нажмите здесь для регистрации.