Главная · Статьи · Файлы · Форум · Категории новостей November 22 2024 02:35:37
Навигация
Главная
Статьи
Файлы
FAQ
Форум
Категории новостей
Обратная связь
Фото галерея
Поиск
Ссылки
Разное
Последние статьи
В процессе изготовле...
Как производят разме...
Библиографический сп...
Контрольные вопросы
Содержание отчета
Сейчас на сайте
Гостей: 5
На сайте нет зарегистрированных пользователей

Пользователей: 33
новичок: tgolovko2010
Друзья сайта

Рейтинг@Mail.ru
Объявление
Момент силы. Момент Импульса. Момент Инерции.
Для характеристики внешнего механического действия на тело которое приводит к изменению вращательного движения тела вводиться понятие момента силы. Различают моменты сил относительно неподвижной точки и относительно неподвижной оси.
Опр. Моментом силы F относительно неподвижной точки O называется векторную величину равную векторному произведению радиуса вектора r проведенного из точки О в точку А приложения силы F и самой силы F. Если линия действия силы проходит через точку вращения то M=0. Если на тело действуют одновременно несколько сил то главным моментом системы сил относительно неподвижной называется вектор
Из 3 закона Ньютона следует что моменты внутренних сил взаимодействия будут взаимно компенсироваться следовательно при вычислении главного момента сил необходимо рассматривать только внешние силы. Моментом импульса МТ относительно неподвижной точки О называется вектор l равный векторному произведению l=[rp]. Моментом импульса системы МТ относительно неподвижной точки О называют геометрической суммой моментов импульса относительно этой точки всех МТ систем. Моментом инерции механической системы относительно оси а называется физическая величина
Равная сумме произведений масс всех МТ на квадраты их расстояния.
Момент инерции тела можно также определить как интеграл
Где D плотность вещества.
Момент инерции тела является мерой инертности тела при вращательном движении вокруг неподвижной оси а подобно тому как масса тела является мерой инертности при его поступательном движении. Момент инерции тела зависит не только от массы, форм и размеров тела, но и от положения тела относительно оси вращения.
Теорема Штейна
Момент инерции тела I относительно произвольной оси равняется сумме момента инерции этого тела относительно оси проходящей через центр инерции этого тела параллельно рассматриваемой оси и произведению массы этого m на квадрат расстояния между осями.
Если рассматриваемый полый цилиндр радиусом R то момент инерции равен
Если взять сплошной цилиндр таково же радиуса R то момент инерции равен
Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.

Нет данных для оценки.
Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Случайные статьи
5.18. НЕКОТОРЫЙ А...
ГЛАВА 18
Предварительное ра...
5.6. ПРОЦЕСС ГРАВ...
ЯВЛЕНИЕ СВЕРХТЕКУЧ...
ГЛАВА 19
Умножительные дио...
Контрольные вопросы
ГЛАВА 61
Теорема Штейнера
Эксперимент Эйнште...
trade mark SSTC ...
5.10. КОСМИЧЕСКИЕ...
Скорость и ускорение
3.4. Сорбция.
После образования ...
Диоды с управляемо...
5.9. НЕКОТОРЫЕ ОС...
5.7. КАК РАБО...
#29 Работа газа пр...
#8 Реактивное движ...
5.6. ПРОЦЕСС ГРАВ...
Прямолинейное уско...
ГЛАВА ШЕСТАЯ
ТЕРМОМЕХАНИЧЕСКИЙ ...
ГЛАВА 20
Целое и его части
2.4.1. Взаимодейст...
ГЛАВА 12
1.1.2. Центробежна...
Обычное становится...
5.7. КАК РАБО...
5.7. КАК РАБО...
2.4. МАТЕРИЯ 3
5.6. ПРОЦЕСС ГРАВ...
#2 Кинематическое ...
Замкнутой системой...
3.3.2. При контакт...
5.7. КАК РАБО...
Э ф ф е к т в о р ...