Главная · Статьи · Файлы · Форум · Категории новостей November 22 2024 03:19:53
Навигация
Главная
Статьи
Файлы
FAQ
Форум
Категории новостей
Обратная связь
Фото галерея
Поиск
Ссылки
Разное
Последние статьи
В процессе изготовле...
Как производят разме...
Библиографический сп...
Контрольные вопросы
Содержание отчета
Сейчас на сайте
Гостей: 5
На сайте нет зарегистрированных пользователей

Пользователей: 33
новичок: tgolovko2010
Друзья сайта

Рейтинг@Mail.ru
Объявление
#26 Физический маятник
Физический маятник – это твердое тело, способное совершать колебания под действием своей силы тяжести вокруг оси, не проходящей через центр тяжести тела. Эта ось называется осью качания.
M = - J E ; M = m g d * sin? (где d – расстояние от центромасс до места крепления физического маятника) ; J E = - mgd sin? ; E = d2 ? / dt (ст.2) ;
J * (d2 ? / dt (ст.2)) + mgd sin? = 0 ; d2 ? / dt (ст.2) + (mgd / J) sin? = 0 ;
Это дифференциальное уравнение, описывающее колебания физического маятника. При малых углах уклонения можно считать, что sin? = ? радиан ;
(d2 ? / dt (ст.2)) + mgd? / J = 0 ; Это дифференциальное уравнение описывает гармонические колебания, частота которых равна:
d2 S / dt (ст.2) + w0 (ст.2) S = 0 ; w0 (ст.2) = mgd / J ; w0 = корень (mgd / J) ;
T = 2ПИ / w0 = 2ПИ (корень J / mgd).
Если твердое тело представляет собой матерьяльную точку, подвешенную на невесомой, нерастяжимой нити и способную совершать колебания, то маятник будет математическом. J = md (ст.2) ; T = 2ПИ (корень md(ст.2) / mgd) = 2ПИ (корень d / g); T = 2ПИ (корень d / g) – период колебания математического маятника.
Малые колебания физического и математического маятника представляет из себя пример изохронных колебаний, т.е. колебаний, частота которых не зависит от амплитуды. В общем случае период колебаний физического маятника зависит от амплитуды: T = 2ПИ (корень J / mgd) * [1 + 1/2 (ст.2) sin (ст.2) (?/2) + (1/2 * 3/4) (ст.2) sin (ст.2) (?/2) + …]. А та формула дает погрешность не более 1,5% для углов отклонения, не превышающих 15 градусов.
Пружинный маятник. Рассмотрим колебания груза на пружине:
Fупр = - kx (закон Гука); ma = Fупр ; m * (d2 x / dt (ст.2)) = - kx ;
(d2 x / dt (ст.1)) + kx / m = 0 – это дифференциальное уравнение, описывающее колебания груза на пружине, жесткость которого равна k.
Частота этих колебаний: w 0 = (корень) k / m ;
Период: T=2ПИ (корень m / k)
Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.

Нет данных для оценки.
Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Случайные статьи
5.7. КАК РАБО...
3.4.3. Влияние э л...
Сигналы из будущего
Потенциальная энергия
Гений природы
5.1. ПОЯВЛЕНИЕ ПАР...
#49 Молекулярно-ки...
2.4.1. Взаимодейст...
5.18. НЕКОТОРЫЙ А...
Свойства булевых а...
5.7. КАК РАБО...
4.1.Физическая пр...
ГЛАВА 23
ГЛАВА 33
5.1. ПОЯВЛЕНИЕ ПАР...
Вращательное движе...
Предисловие редакт...
Булевы алгебры. Пр...
5.7. КАК РАБО...
5.20. ЧТО ОТКРЫЛ...
5.4. ГРАВИТАЦИЯ ГЛ...
2.2 Передача энерг...
5.7. КАК РАБО...
5.3. АНАЛИЗ ОСНОВН...
5.5. ПРОЦЕСС ГРАВИ...
5.15. НЕКОТОРЫЕ ОС...
3.1. ОБРАЗОВАНИЕ П...
Путь к объединению
5.7. КАК РАБО...
4.1.Физическая пр...
Записка Отдела н...
#18 Основное уравн...
Наибольшую эффекти...
ГЛАВА 44
5.7. КАК РАБО...
При умножении аргу...
ГЛАВА 62
Гармонический осци...
#16 Теорема Штейнера
5.18. НЕКОТОРЫЙ А...