Инерциальная система отсчета и принцип относительности.
Установлено, что во всех инерциальных системах отсчета законы классической механики имеют одинаковую форуму. В этом состоит суть принципа относительности Галелея. В Ньютоновской механике при переходе от одной инерциальной системы отсчета k (x, y, z, t) к другой
k’ (x’, y’, z’, t’), движущейся относительно 1ой со скоростью u, справедливы преобразования Галелея. Они основаны на 2х аксиомах – об неизменности промежутков времени между 2мя событиями и расстояния между 2мя точками по отношению к центру системы отсчета. Иными словами – время течет одинаково во всех инерциальных системах отсчета и размеры тел не меняются при переходе от одной инерциальной системы отсчета к другой
r = r’ + r нулевое = r’ + u t ; U – скорость ; r – радиус вектор до точки от 1ой системы отсчета; r ‘ – радиус-вектор до точки от 2ой системы ; r нулевой – расстояние от одной системы до другой ;
Будем считать, что скорость u направлена вдоль радиус-вектора r нулевое:
x = x’ + Ux t ; y = y’ + Uy t ; z = z’ + Uz t ; t = t’ – преобразования Галилея
v = dr / dt = dr / dt + dr нулевое / dt ; v = v’ + u ; a = dv / dt = a’ ; a = a’ ;
При таком переходе ускорение не меняется ; z = z’ ; Из этих выражений следует, что уравнения динамики не изменяются при переходе от одной инерциальной системы отсчета к другой. Иными словами – никакими механическими опытами нельзя определить движение инерциальной системы отсчета.
Опубликовал Kest
December 11 2009 15:33:52 ·
0 Комментариев ·
4122 Прочтений ·
Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.
Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.
Нет данных для оценки.
Гость
Вы не зарегистрированны? Нажмите здесь для регистрации.