Главная · Статьи · Файлы · Форум · Категории новостей Ноябрь 21 2017 05:35:19
Навигация
Главная
Статьи
Файлы
FAQ
Форум
Категории новостей
Обратная связь
Фото галерея
Поиск
Ссылки
Разное
Последние статьи
В процессе изготовле...
Как производят разме...
Библиографический сп...
Контрольные вопросы
Содержание отчета
Сейчас на сайте
Гостей: 1
На сайте нет зарегистрированных пользователей

Пользователей: 33
новичок: tgolovko2010
Друзья сайта

Рейтинг@Mail.ru
Объявление
Великое объединение
С появлением КХД все существующие в природе взаимодействия, наконец, приобрели единое описание на основе калибровочных полей. Это принесло новые надежды. Успешное объединение слабого и электромагнитного взаимодействий в рамках теории калибровочных полей подсказало возможность дальнейшего объединения. В 1973 г. Шелдон Глэшоу и Говард Джорджи опубликовали теорию, в которой новое электрослабое взаимодействие сливалось б сильным (глюонным) в великое единое взаимодействие. Это была первая теория Великого объединения, ТВО. Ныне существует несколько конкурирующих ТВО, но все они основаны на одной и той же идее.
Если электрослабое и сильное взаимодействия в действительности представляют собой лишь две стороны великого единого взаимодействия, то последнему должно соответствовать калибровочное поле с детально разработанной симметрией, достаточно широкой, чтобы охватить все калибровочные симметрии, содержащиеся в КХД и теории Вайнберга – Салама. Отыскание такой симметрии – задача математики. Единой симметрии, которая обладала бы всеми нужными свойствами, не существует, отсюда и обилие конкурирующих теорий. Тем не менее все ТВО имеют ряд общих особенностей.
Одна из них состоит в том, что кварки, источники (носители) сильного взаимодействия, и лептоны, источники (носители) электрослабого взаимодействия, включаются в единую теоретическую схему. До сих пор кварки и лептоны рассматривались как совершенно различные объекты, так что их включение в единую теорию было совершенно новой идеей. Оно ознаменовало еще один важный шаг на пути к объединению.
Калибровочные симметрии, входящие в ТВО, можно наглядно представить с помощью все той же “волшебной ручки”, перемешивающей природу частиц, но с большим числом указателей. Вместо двух указателей, как в случае электрослабого взаимодействия, и трех – в случае КХД, теперь требуется пять указателей. От поворота ручки ТВО зависит очень многое. Ручки с пятью указателями позволяют делать то, что было не под силу ручкам с меньшим числом указателей: превращать кварки в лептоны и даже в антикварки, т.е. осуществлять переходы, абсолютно запрещенные в прежних теориях.
Как и прежде, требование, чтобы в природе с помощью компенсирующих полей соблюдалась абстрактная калибровочная симметрия (на этот раз более широкая), приводит нас к открытию (чисто теоретическому) новых типов полей, обладающих новыми свойствами, например способностью превращать кварки в лептоны. В простейшем варианте ТВО, предложенном Джорджи и Глэшоу, волшебная ручка связывает вместе красные, зеленые и синие d кварки, позитрон и антинейтрино. Для этого требуется двадцать четыре поля. Двенадцать из квантов этих полей уже известны: фотон, две W частицы, Z частица и восемь глюонов.
Остальные двенадцать квантов – новые, объединенные общим названием Х частицы. Эти кванты соответствуют полям, поддерживающим более широкую калибровочную симметрию и перемешивающим кварки с лептонами (это соответствует положениям волшебной ручки, при которых происходит смешивание, например, красного d кварка и позитрона). Следовательно, кванты этих полей, Х частицы, могут превращать кварки в лептоны (и наоборот), если те обмениваются ими как переносчиками взаимодей ствия. Электрический заряд Х частиц равен 1/3 и 4/3.
Проследим теперь за судьбой типичного адрона, который испытывает на себе действие этих необычных Х частиц. В качестве такого адрона удобно выбрать протон, состоящий из двух u кварков и одного d кварка. d Кварк смешивается с позитроном посредством великой калибровочной симметрии Великого объединения в может превращаться в позитрон путем обмена Х частицей с нужными характеристиками, в данном случае с надлежащим цветовым зарядом и электрическим зарядом –4/3. Эта Х частица должна быть передана какой то другой частице, которой может служить один из u кварков протона. Поглощая Х частицу, и кварк превращается в антии кварк.
Происходит нечто замечательное. То, что в самом начале было комбинацией двух u кварков и одного d кварка, превратилось в позитрон и пару кварк – антикварк. Позитрон не участвует в сильном взаимодействии и поэтому вылетает из адрона, тогда как оставшаяся пара кварк – антикварк образует уже не протон, а мезон (точнее, пион). С точки зрения экспериментатора, эта последовательность событий выглядит как распад протона на позитрон и пион.
На протяжении всей истории физики элементарных частиц незыблемым правилом всегда оставалась абсолютная стабильность протона. Ведь обычное вещество построено из протонов. Предсказание ТВО, что протон может оказаться нестабильным и распадаться, было ошеломляющим. Из него следует, что все вещество в конечном счете нестабильно и, следовательно, не вечно – вывод, безусловно, чрезвычайно глубокий.
В начале зимы 1974г. я ехал на машине из Лондона на конференцию в Резерфордовскую лабораторию, расположенную близ Оксфорда. Одним из моих попутчиков был Абдус Садам, и разговор зашел о содержании доклада, с которым он собирался выступить. Салам сказал, что у него есть кое какие идеи о возможности распада протонов. Помню, что сама мысль о распаде протона смутила меня, и я отнесся к ней не без изрядной доли скептицизма. В назначенное время Салам сделал свой доклад, который оказался весьма пророческим. Но эта конференция запомнилась мне беседой с Стивеном Хокингом из Кембриджского университета, который сообщил о своем сенсационном открытии; ему удалось доказать, что черные дыры неустойчивы и в конце концов взрываются, создавая потоки радиации. Небезынтересно, что процесc Хокинга, как стало ясно автору открытия спустя несколько лет, может также вызвать распад протона. Квантовые эффекты позволяют протону путем спонтанного туннелирования превращаться в виртуальную черную дыру, которая затем испаряется (что описывается процессом Хокинга), испуская при этом позитрон. Однако распад протона через черную дыру менее вероятен, чем по схеме ТВО.
Ясно, что внезапное исчезновение протона – событие, которое не может не привлечь острого внимания специалистов по физике элементарных частиц; в этой связи возникает вопрос, почему распад протона не был открыт давным давно. Чтобы ответить на этот вопрос, необходимо выяснить, какую скорость распада предсказывает теория. Исследование радиоактивности показывает, что период полураспада может изменяться в широких пределах
в зависимости от силы взаимодействия, вызывающего распад, и масс, участвующих в распаде частиц. В случае распада протона решающее значение имеет масса Х частицы, которая, согласно “правилам игры”, определяет ее пробег. Если Х частица очень массивна, то сфера ее действия сильно ограничена. Чтобы произошел распад протона, два участвующих в нем кварка должны сблизиться на расстояние, при котором возможен обмен Х частицей, а это происходит чрезвычайно редко. По этой причине распад протона не наблюдался на опыте. Используя самые точные из имеющихся на сегодня оценок периода полураспада протона и решая обратную задачу, физики пришли к заключению, что масса Х частицы составляет примерно 1014 масс прочена, т.е. колоссальную величину, по сравнению с которой масса самой тяжелой из известных ныне частиц, Z, равная примерно 90 массам протона, пренебрежимо мала.
Прежде чем подробнее остановиться на столь ошеломляющей цифре, необходимо разрешить один кажущийся парадокс. Возможно, читателя обескуражит утверждение, что протон может содержать внутри частицу – переносчик взаимодействия, которая в 1014 раз тяжелее его самого. Это кажущееся противоречие разрешает принцип неопределенности Гейзенберга. Напомним, что Х частица существует лишь короткое мгновение, на протяжении которого два кварка, сблизившиеся до очень малого расстояния, обмениваются ею. На протяжении столь коротких интервалов времени энергия, а следовательно, и масса будут иметь громадную неопределенность.
С помощью принципа неопределенности квантовая теория устанавливает связь между энергией (или массой) и расстоянием. Следовательно, масштаб масс автоматически определяет масштаб расстояний. Физические явления, происходящие в некотором пространственном масштабе, – это процессы, играющие важную роль при определенной энергии (или массе). Именно 'поэтому для исследования происходящего на малых расстояниях необходимы ускорители частиц очень высоких энергий. Масштаб масс Х частиц задает соответствующий пространственный масштаб – грубо говоря, расстояние, которое проходят Х частицы, перенося взаимодействие. Это расстояние равно примерно 10 29 см. Таков пробег Х частиц; его величина говорит о расстоянии, на которое должны сблизиться два кварка, чтобы произошел обмен Х частицей, приводящий к распаду протона. 10 29 см по сравнению с размером протона – это примерно то же, что пылинка по сравнению с Солнечной системой. Масштаб пространства, где господствуют ТВО и происходит распад протона, в триллионы раз мельче мира кварков и глюонов, который нам до сих пор удавалось исследовать с помощью ускорителей. Он напоминает вселенную внутри протона, которая недоступна нам в силу своей малости, как недоступны внегалактические пространства из за их удаленности. Для прямого зондирования этой Лилипутии при шлось бы построить ускоритель, превосходящий по своим размерам Солнечную систему.
Любая полная теория существующих в природе взаимодействий должна объяснять относительную величину каждого из них. Создатели ТВО быстро продемонстрировали, каким образом их теория могли бы объяснить огромное различие в величинах электрослабого и сильного взаимодействий. Реальная величина этих взаимодействий – не то, что измеряют экспериментаторы, наблюдая за превращениями субатомных частиц, поскольку, как уже говорилось, все источники различных полей экранируются вследствие поляризации вакуума. Экранировка приводит к тому, что электромагнитное взаимодействие на малых расстояниях усиливается, а сильное – ослабевает, и их величины выравниваются. Когда величина слабого взаимодействия подобрана так, чтобы произошло нарушение симметрии, это взаимодействие вклинивается между двумя другими и, подобно сильному взаимодействию, испытывает антиэкранировку, т.е. ослабевает на малых расстояниях. Интересно оценить, на каком расстоянии все три взаимодействия станут сравнимы по величине. Оно снова оказывается равным примерно 10 28 см, т.е. в точности совпадает с масштабом расстояний, соответствующим массе Х частиц. Приятное совпадение.
Результат этого анализа заключается в следующем: при ультра высоких энергиях (что эквивалентно ничтожно малым расстояниям) электромагнитное, слабое и сильное взаимодействия сливаются в одно взаимодействие и различие между кварками и лептонами исчезает. Взаимодействия и частицы в мире нашего опыта воспринимаются нами как совершенно различные явления, поскольку мы исследуем вещество при сравнительно низких энергиях. Физики называют величину, равную 1014 массам протона, масштабом объединения. Значение этого числа поистине потрясает.
Прежде чем двигаться дальше, необходимо оценить состояние теорий Великого объединения. Создавая Великое объединение трех взаимодействий, ТВО существенно уменьшают число произвольных параметров, используемых для описания природы. Менее амбициозная теория Вайнберга – Салама содержит постоянные, значения которых можно определить из эксперимента. В ТВО некоторые из этих чисел уже нельзя задать ad hoc, а следует определить из теории.
ТВО обладают и некоторыми неожиданными преимуществами. Одно из них – возможность объяснить старую загадку: почему электрические заряды всегда кратны одной и той же фундаментальной единице? Если принять заряд электрона за –1, а заряд протона за +1, то наименьший из возможных зарядов, –1/3, имеет d кварк. Все остальные заряды, независимо от того, являются ли их носителями кварки, лептоны или переносчики взаимодействия, равны небольшому целому кратному этого значения. До создания ТВО было неясно, почему не могут существовать частицы с любым зарядом, например с зарядом, равным л фундаментальных единиц. Единая теория не допускает существования таких зарядов. Жесткие правила отбора допустимых зарядов обусловлены тем, что все частицы принадлежат большим семействам, члены которых могут обмениваться частицами – переносчиками взаимодействия, имеющими заряды, равные фиксированному числу единиц заряда. Например, при распаде протона, когда d кварк превращается в позитрон и передает заряд –4/3 Х частице, поглощающий ее м кварк должен приобрести (в результате поглощения Х частицы) заряд, соответствующий заряду возникающего при этом антикварка. Вся арифметика должна сходиться. Это означает, что все частицы семейства должны иметь заряды, равные небольшим целым кратным друг друга (или вообще не иметь заряда).
Среди аргументов против различных ТВО называют отсутствие однозначной теории и масштаб объединения, столь далекий, что вряд ли эта теория когда нибудь будет доступна непосредственной экспериментальной проверке. Как же в таком случае выбрать одну из соперничающих теорий? Если ТВО описывают природу в столь малых масштабах и при столь высоких энергиях, которые мы никогда не сможем наблюдать, то не превратится ли физика в метафизику? Не находимся ли мы в положении Демокрита и других греческих философов, которые без конца размышляли о формах и свойствах атомов, не имея ни малейшей надежды наблюдать их?
Некоторые физики пылко надеются, что это не так, и указывают три спасительные путеводные нити, которые позволяют нам сохранить власть над физикой в масштабе объединения. Рассмотрим каждую из них в отдельности.
Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.

Нет данных для оценки.
Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Случайные статьи
ГЛАВА СЕДЬМАЯ
При образовании до...
Таблица истинности
Принцип действия УД
ВЯЗКОЭЛЕКТРИЧЕСКИЙ...
5.18. НЕКОТОРЫЙ А...
ГЛАВА ШЕСТАЯ
5.5. ПРОЦЕСС ГРАВИ...
КАЭС публикации М...
#4 Движение точки ...
Закон сохранения м...
5.7. КАК РАБО...
2.1.4. Э ф ф е к ...
Группа. Теорема об...
ФИЗИЧЕСКИЕ МОДЕЛИ
5.7. КАК РАБО...
Булевы алгебры. Пр...
На протяжении след...
5.7. КАК РАБО...
5.9. НЕКОТОРЫЕ ОС...
5.7. КАК РАБО...
5.20. ЧТО ОТКРЫЛ...
Абсолютно твердое ...
4.1.Физическая пр...
5.10. КОСМИЧЕСКИЕ...
Контрольные вопросы
Предисловие редакт...
5.7. КАК РАБО...
ГЛАВА 44
Электроны
Угловое ускорение
1.3.2. Эффект безы...
5.7. КАК РАБО...
5.6. ПРОЦЕСС ГРАВ...
Источник всех изме...
5.7. КАК РАБО...
#21 Принцип относи...
Постулаты СТО. Одн...
5.5. ПРОЦЕСС ГРАВИ...
5.7. КАК РАБО...